Nanostructuring Platinum Nanoparticles on Ni/Ce0.8Gd0.2O2-δ Anode for Low Temperature Solid Oxide Fuel Cell via Single-step Infiltration: A Case Study

Authors

1 Materials and Energy Research Center (MERC), Karaj, Alborz, Iran

2 Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH)

3 Department of Ceramic, Materials and Energy Research Center (MERC)

4 Department of Energy; Materials and energy Research Center (MERC)

Abstract

With the aim of promoting the Ni/Ce0.8Gd0.2O2-δ (Ni/GDC20) cermet anodic performance of low temperature solid oxide fuel cell (LT-SOFC) [1], nanostructuring platinum nanoparticles on NiO/GDC composite was done by single-step wet-infiltration of hexachloroplatinic acid hexahydrate (H2PtCl6.6H2O) precursor on NiO/GDC20 composite. The anodic polarization resistance was measured using symmetric Ni–GDC20|GDC20|Pt electrolyte-supported cell at a temperature range of 400 to 600 °C. Microstructural refinement was studied by field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) techniques in comparison to the bare anode before and after hydrogen reduction at 600 °C and also after anodic performance test. Nanostructuring Pt-nanoparticles with an average particle size of 12.5 nm on Ni/GDC20 anode indicated the lack of electrocatalytic enhancement with the addition of platinum for H2 oxidation reaction in LT-SOFC.

Keywords

Main Subjects